질문
열역학 정압비열 정적비열 관계식에 대해서 질문드립니다.
kin.naver.com/qna/detail.nhn?d1Id=11&dirId=1114&docId=371687869
답변
\[ds =\left ( \frac{\partial s}{\partial T}\right )_{v}dT+\left ( \frac{\partial s}{\partial v}\right )_{T}dv\]
\[=\frac{1}{T} \left (\frac{\partial u+P\partial v}{\partial T}\right )_{v}dT+\left ( \frac{\partial s}{\partial v}\right )_{T}dv\]
\[ =\frac{1}{T} \left (\frac{\partial u}{\partial T}\right )_{v}dT+\left ( \frac{\partial s}{\partial v}\right )_{T}dv\]
\[=\frac{c_{v}}{T} dT+\left ( \frac{\partial s}{\partial v}\right )_{T}dv\]
\[ds =\left ( \frac{\partial s}{\partial T}\right )_{P}dT+\left ( \frac{\partial s}{\partial P}\right )_{T}dP\]
\[=\frac{1}{T} \left (\frac{\partial h-v\partial P}{\partial T}\right )_{P}dT+\left ( \frac{\partial s}{\partial P}\right )_{T}dP\]
\[ =\frac{1}{T} \left (\frac{\partial h}{\partial T}\right )_{P}dT+\left ( \frac{\partial s}{\partial P}\right )_{T}dP\]
\[=\frac{c_{P}}{T} dT+\left ( \frac{\partial s}{\partial P}\right )_{T}dP\]
[열역학 Thermodynamics/7. 엔트로피 Entropy] - T ds 관계식 Tds equation
[열역학 Thermodynamics/12. 일반관계식 Thermodynamic Relations ] - ds 일반관계식 ds general relation
\[ds=\frac{c_{v}}{T} dT+\left ( \frac{\partial s}{\partial v}\right )_{T}dv\]
\[=\frac{c_{P}}{T} dT+\left ( \frac{\partial s}{\partial P}\right )_{T}dP\]
\[\frac{1}{T}\left(c_{P}-c_{v} \right)dT=\left ( \frac{\partial s}{\partial v}\right )_{T}dv-\left ( \frac{\partial s}{\partial P}\right )_{T}dP\]
\[dT=\frac{T}{\left(c_{P}-c_{v} \right)}\left ( \frac{\partial s}{\partial v}\right )_{T}dv-\frac{T}{\left(c_{P}-c_{v} \right)}\left ( \frac{\partial s}{\partial P}\right )_{T}dP\]
\[dT=\left ( \frac{\partial T}{\partial v}\right )_{P}dv+\left ( \frac{\partial T}{\partial P}\right )_{v}dP\]
\[\left ( \frac{\partial T}{\partial v}\right )_{P}dv=\frac{T}{\left(c_{P}-c_{v} \right)}\left ( \frac{\partial s}{\partial v}\right )_{T}dv\]
\[c_{P}-c_{v} =T\left ( \frac{\partial s}{\partial v}\right )_{T}\left ( \frac{\partial v}{\partial T}\right )_{P}\]
\[=\left ( \frac{T\partial s}{\partial v}\right )_{T}\left ( \frac{\partial v}{\partial T}\right )_{P}\]
\[=\left ( \frac{\partial u+P\partial v}{\partial v}\right )_{T}\left ( \frac{\partial v}{\partial T}\right )_{P}\]
\[=\left[ \left ( \frac{\partial u}{\partial v}\right )_{T}+P\right]\left ( \frac{\partial v}{\partial T}\right )_{P}\]
\[\left ( \frac{\partial T}{\partial P}\right )_{v}dP=-\frac{T}{\left(c_{P}-c_{v} \right)}\left ( \frac{\partial s}{\partial P}\right )_{T}dP\]
\[c_{P}-c_{v} =-T\left ( \frac{\partial s}{\partial P}\right )_{T}\left ( \frac{\partial P}{\partial T}\right )_{v}\]
\[=-\left ( \frac{T\partial s}{\partial P}\right )_{T}\left ( \frac{\partial P}{\partial T}\right )_{v}\]
\[=-\left ( \frac{\partial h -v\partial P}{\partial P}\right )_{T}\left ( \frac{\partial P}{\partial T}\right )_{v}\]
\[=-\left[ \left ( \frac{\partial h}{\partial P}\right )_{T}-v\right]\left ( \frac{\partial P}{\partial T}\right )_{v}\]
[열역학 Thermodynamics/12. 일반관계식 Thermodynamic Relations ] - Mayer 관계식 Mayer's relation
[열역학 Thermodynamics/12. 일반관계식 Thermodynamic Relations ] - Maxwell 관계식 Maxwell relations
[열역학 Thermodynamics/12. 일반관계식 Thermodynamic Relations ] - 편미분 관계식 partial differential relations
'열역학 Thermodynamics > 문제와 풀이 Problems and Solutions' 카테고리의 다른 글
개방계 시스템 터빈/압축기 일과 엔탈피 관계 (0) | 2021.05.20 |
---|---|
열역학 일반관계식, 맥스웰 관계식 증명 (0) | 2020.11.05 |
정압과정에서 내부에너지 감소? (0) | 2020.10.21 |
이상기체의 정적비열과 정압비열 관계 (0) | 2020.10.20 |
열역학 체팽창계수 등온압축계수 일반관계식 문제풀이 (0) | 2020.10.18 |